METRIC SPACES: FINAL EXAM 2016

DOCENT: A. V. KISELEV

Evaluation: $\min \left(100\%, \max \left(5 \text{ prb} \times 20\% \cdot \begin{bmatrix} 1.00 \\ 1.15^{\text{top}} \end{bmatrix}, \sum_{i=1}^{6} \text{h/w} \times 5\% + 5 \text{ prb} \times 14\% \cdot \begin{bmatrix} 1.00 \\ 1.15^{\text{top}} \end{bmatrix} \right) \right)$.

Problem 1. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a non-empty metric space, r and s be two positive radii, and $\mathsf{B}^{\mathrm{d}_{\mathfrak{X}}}_{r}(x) = \mathsf{B}^{\mathrm{d}_{\mathfrak{X}}}_{s}(y)$ for some $x, y \in \mathfrak{X}$.

- Is it true that r = s?
- Is it true that x = y?

Problem 2. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space and $\emptyset \neq A \subseteq \mathfrak{X}$ its subset. Prove that the interior $\operatorname{Int}(A) = \{a \in A \mid \exists \varepsilon(a) > 0, B_{\varepsilon}^{d_{\mathfrak{X}}}(a) \subseteq A\}$ is open in \mathfrak{X} .

Problem 3. Let A and B be connected subsets of a metric space and $A \cap \overline{B} \neq \emptyset$. Prove that the union $A \cup B$ is connected.

Problem 4. Let A and B be compact subsets of a Hausdorff space X. Prove that their intersection $A \cap B$ is compact.

Problem 5. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a non-empty complete metric space. Suppose that $f, g: \mathfrak{X} \to \mathfrak{X}$ are two Banach's contractions of \mathfrak{X} . Prove that there always exists a unique point $x_0 \in \mathfrak{X}$ such that $f(g(x_0)) = x_0$.

Date: April 1, 2016.

Do not postpone your success until 22 June. GOOD LUCK!